About

About this Blog

Pages

 
                      IV WORKSHOP ON GREEN ANALYTICAL CHEMISTRY

                                     Valencia, 9-10th September 2013



PROVENANCE OF RAW MATERIALS FOR LITHIC ARTEFACTS IDENTIFIED BY REEs

 
Gianni Gallello* a, b, Agustin Pastorb,Teresa Orozcoª, Agustin Diezª, Joan Bernabeuª


ªDepartment of Prehistory and Archaeology University of Valencia, 28 Blasco Ibáñez Street, 46010 Valencia, Spain

cDepartment of Analytical Chemistry University of Valencia, 50 Dr. Moliner Street, 46100 Burjassot, Valencia, Spain

Abstract
Geochemical studies of lithic artefacts in archaeology have been based on find a relation between the archaeological materials and the primary source present in nature using their chemical profile. Provenance information results useful to rebuilt settlements patterns, investigate stone tool technologies, exchange systems and territoriality . The aim of this study was to explore the capability of rare earth elements (REEs), analyzed by ICP-MS and employing multivariate statistics, for the identification of diabase outcrops employed for lithic artefacts (axes) manufacture found in some Valencian Prehistoric sites. These preliminary results show that REEs analysis can help to assess the provenance of lithic raw materials according to their elemental profile at regional level.

 

Keywords: Rare Earth Elements (REEs); ICP-MS; multivariate statistics, lithic artefacts, diabase outcrops.

 
 

NEW ARTICLE: JOURNAL OF ACHAEOLOGICAL SCIENCE

BIOLOGICAL MINERAL CONTENT IN IBERIAN SKELETAL CREMAINS FOR CONTROL OF DIAGENETIC FACTORS EMPLOYING MULTIVARIATE STATISTICS.

  Gianni Gallello* ª º, Julia Kuligowskiº, Agustin Pastorº, Agustin Diezª, Joan Bernabeuª

  ªDepartment of Prehistory and Archaeology University of Valencia, 28 Blasco Ibáñez Street, 46010 Valencia, Spain
ºDepartment of Analytical Chemistry University of Valencia, 50 Dr. Moliner Street, 46100 Burjassot, Valencia, Spain

  Abstract
The aim of this study was to define a strategy for a correct selection of bone samples by employing inductively coupled plasma optical emission spectroscopy (ICP-OES) for reconstructing the biological mineral content in bones through the determination of major elements, trace elements and Rare Earth Elements (REE, lanthanides) in skeletal cremains of ancient Iberians (III-II B.C), discovered in the Necropolis of Corral de Saus (Moixent, Valencia) between 1972 and 1979. The biological mineral content was determined taking into account diagenetic factors. A control method for a better reading of results was applied. To explore large geochemical datasets and to reduce the number of variables, Principal Component Analysis (PCA) was used, thus, providing a deeper insight into the structure of the variance of the dataset. PCA shows that the elemental profiles of bone and soil samples are clearly different. Bone samples obtained from the outer bone layer were shown to have a different elemental composition; more similar to soil samples than samples of the inner bone layer. PCA scores and loadings plots were preferred to dendrograms obtained using Cluster Analysis, due to the limits of the latter one to appreciate the spatial ordering of samples. Partial least squares discriminant analysis (PLS-DA), a frequently used supervised classification method, was applied to differentiate between degradation states of bone samples. PLS-DA results obtained in this study confirmed that changes derived from different burning conditions were associated with transformations in the mineral part of the bones. Accordingly, carbonized bones can be differentiated from cremated bones. Class assignment of bone samples with uncertain thermal conditions in dependence on their elemental composition has shown to be feasible. Consequently, for biochemical-archaeological studies the analysis and statistical classification of carbonized and cremated archaeological bones, as well as those exposed to unknown thermal conditions together with experiments in modern bones, are recommended.

  Keywords: trace elements; major elements; Rare Earth Elements (REE); skeletal cremains; diagenesis; ICP-OES; multivariate statistics.

Available online 6 February 2013
http://www.sciencedirect.com/science/article/pii/S0305440313000319
http://dx.doi.org/10.1016/j.jas.2013.01.022, How to Cite or Link Using DOI

NEW ARTICLE: Journal of Archaeological Science

Anthropogenic units fingerprinted by REE in archaeological stratigraphy: Mas D’IS (Spain) case.
Gianni Gallello,aAgustin Pastorb,Agustin Dieza,Neus La Rocac,Joan Bernabeua
 
a)  Department of Prehistory and Archaeology University of Valencia, 28 Blasco Ibañez Street,  46010    Valencia, Spain.
b)  Department of Analytical Chemistry University of Valencia, 50 Dr. Moliner Street, 46100 Burjassot, Valencia, Spain.
c)  Department of Geography University of Valencia, 28 Blasco Ibañez Street, 46010 Valencia, Spain; Prof. Jean Monnet.
 
Available online 23 October 2012
 

Abstract

On occasions, archaeologists have to deal with serious difficulties to differentiate between processes that ultimately are responsible for the formation of stratigraphic units. Sometimes we face problems related with depositional units in multilayered deposits and other times, they ask for the character of some dark surface soils, very similar to natural paleosols and usually associated with archaeological findings. In both cases, the problems we must address concern the relative impact of human activities. The imbalance between anthropic and natural processes in the formation of archaeological deposits is crucial for a correct interpretation of the processes involved in the formation of archaeological sites, but also of their occupation-abandonment dynamics and the understanding of their spatial behaviors and relationship with the environment.In this paper we propose a new methodological approach for the identification of anthropogenic fingerprints in stratigraphic units through Rare Earth Elements (REE) soil analysis. The role of REE for the effective identification of sediment provenance due to their coherent behavior during weathering, erosion and fluvial transportation and their high resistance to chemical mobilization is well known in other areas of knowledge. We try to explore its potentiality in a challenging archaeological context. Our purpose was to identify human traces in stratigraphic units where archaeological materials are scarce or absent intertwined with others richer in archaeological remains by the determination of multiple elements and statistical studies. We believe that Rare Earth Elements (REE) soil analysis provides unique insights for a better characterization of natural and archaeological sediments but more importantly to recognize different stages of the gradient. We expect to discern between natural versus anthropic units and between primary versus secondary deposits (redeposition), using the case of the Neolithic site of Mas d’Is (Alicante, Spain) as an example. The application of the Principal Component Analysis (PCA) remarks differences in REE values, those analysis show differences between units of undoubtedly anthropogenic origin and control samples taken from natural sediments –including marls bedrock–, in their vicinity, but also we could notice finer nuances like the degree of human contributions to paleosols formation.

Keywords

  • Rare earth elements
  • Lanthanides
  • Trace elements
  • Archaeological stratigraphy
  • paleosols

III WORKSHOP ON GREEN ANALITYCAL CHEMISTRY

Mineral contents in archaeological bones and soils for control of diagenetic factors: determination by ICP-OES and ICP-MS.

Gianni Gallello* ª º, Agustin Pastorº, Agustin Diezª, Joan Bernabeuª
ªDepartment of  Prehistory and Archaeology University of  Valencia, 28 Blasco Ibañez Street, 46010 Valencia, Spain
ºDepartment of Analytical Chemistry University of Valencia, 50 Dr. Moliner Street, 46100 Burjassot, Valencia, Spain





Abstract
The aim of this study is the determination of Major elements, Trace elements and REE in archaeological skeletal remains and soils, taking in into account diagenetic factors applying a method of control for a better reading of the results. ICP-OES and ICP-MS analysis were adequate techniques to observe objective internal relations among the samples and reach our hypothesis.

 



Iteresting articles: Journal of Archaeological Science

Trace element fingerprinting of ancient Chinese gold with femtosecond laser ablation inductively coupled mass spectrometry

Lynn B. Brostoff (a), Jhanis J. Gonza´ lez (b), Paul Jett (c), Richard E. Russo (b)

(a)Library of Congress, Preservation Research and Testing Division, 101 Independence Avenue, SE, Washington, DC 20540, USA

(b) Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 


(c)The Freer Gallery of Art/Arthur M. Sackler Museum, Smithsonian Institution, Washington, DC 20013, USA


In this collaborative investigation, femtosecond laser ablation-inductively coupled mass spectrometry
(LA-ICP-MS) was applied to the study of a remarkable group of ancient Chinese gold objects in the
Smithsonian’s Freer Gallery of Art and Arthur M. Sackler Gallery. Taking advantage of the superior
ablation characteristics and high precision of a femtosecond 266 nm Ti:sapphire laser at Lawrence
Berkeley National Laboratory, major, minor and trace element concentrations in the gold fragments were
quantified. Results validate use of femtosecond LA-ICP-MS for revealing ‘‘fingerprints’’ in minute gold
samples. These fingerprints allow us to establish patterns based on the association of silver, palladium
and platinum that support historical, technical and stylistic relationships, and shed new light on these
ancient objects.

2008 Published by Elsevier Ltd.
Journal of Archaeological Science 36 (2009) 461–466

Iteresting articles: Journal of Archaeological Science


Burned bone in the Howiesons Poort and post-Howiesons Poort Middle Stone
Age deposits at Sibudu (South Africa): behavioral and taphonomic implications
Jamie L. Clark a,b,*, Bertrand Ligouis c
a Department of Anthropology, Southern Methodist University, PO Box 750336, Dallas, TX 75275, USA
b Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa
c Laboratory for Applied Organic Petrology, Institut für Ur- und Frühgeschichte und Archäologie des Mittelalters, and Zentrum für Naturwissenschaftliche Archäologie, Eberhard-
Karls-Universität Tübingen, Rümelinstr. 23, 72072 Tübingen, Germany

a b s t r a c t
Despite a growing awareness of the wide range of information that can be provided by detailed analyses
of burned bone from archaeological contexts, such analyses are still relatively uncommon. This paper
focuses on the behavioral and taphonomic implications of burned bone from the Middle Stone Age (MSA) site of Sibudu Cave (South Africa), reporting on the analysis of a large sample (>377,000 fragments) of bone recovered from the Howiesons Poort (HP) and post-HP MSA deposits at the site. Faunal remains were initially sorted into burning categories based on changes in color; microscopic analyses focused on the optical properties of the bone matrix (degree of preservation of the bone structure, reflectance and fluorescence) indicated that the color is a valid indicator of thermally altered bone in the Sibudu assemblage. The association of burned bone with hearths, the intensity of burning damage, and the sheer quantity of thermally altered bone suggests that the bone was not burned primarily as a result of natural fires.We propose that the high incidence of burned bone primarily reflects two types of site maintenance activities: first, the discarding of bone into fire as a means of disposing of food waste (as also argued by Cain [2005, Using burned animal bone to look at Middle Stone Age occupation and behavior. J. Archaeol. Sci. 32, 873e884], for a smaller sample of material from the post-HP and late MSA deposits at the site), and second, the incidental burning of bone on/near the surface during the periodic burning of plantbased bedding. In considering the taphonomic implications of the burned bone, we demonstrate that calcined bone is in fact more heavily fragmented than unburnt or moderately burned bone. Furthermore, cortical preservation was negatively correlated with the intensity of burning damage, which has implications for the study of surface modifications. These results indicate the importance of conducting thorough taphonomic analyses prior to making comparisons between units that show differing degrees or intensities of burning damage.
2010 Elsevier Ltd. All rights reserved.
Journal of Archaeological Science 37 (2010) 2650-2661










Interesting article: Palaeogeography, Palaeoclimatology, Palaeoecology

Early diagenesis of bone and tooth apatite in fluvial and marine settings: Constraints from combined oxygen isotope, nitrogen and REE analysis.                                                                       
T. Tütken(ab), T.W. Vennemann (c),H.-U. Pfretzschner (d)



(a)Institut für Geowissenschaften, Arbeitsbereich für Mineralogie und Geodynamik, Abteilung, Geochemie, Universität Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany
(b)Steinmann Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
(c)Institut de Minéralogie et Géochimie, Université de Lausanne, BFSH 2, 1015 Lausanne, Switzerland
(d)Institut für Geowissenschaften, Arbeitsbereich Biogeologie und Angewandte Paläontologie, Sigwart Strasse 10, Universität Tübingen, 72076 Tübingen, Germany


A B S T R A C T
Fossil bones and teeth of Late Pleistocene terrestrial mammals from Rhine River gravels (RS) and the North Sea (NS), that have been exposed to chemically and isotopically distinct diagenetic fluids (fresh water versus seawater), were investigated to study the effects of early diagenesis on biogenic apatite. Changes in phosphate oxygen isotopic composition (δ18OPO4), nitrogen content (wt.% N) and rare earth element (REE) concentrations were measured along profiles within bones that have not been completely fossilized, and in skeletal tissues (bone, dentine, enamel) with different susceptibilities to diagenetic alteration. Early diagenetic changes of elemental and isotopic compositions of apatite in fossil bone are related to the loss of the stabilizing collagen matrix. The REE concentration is negatively correlated with the nitrogen content, and therefore the amount of collagen provides a sensitive proxy for early diagenetic alteration. REE patterns of RS and NS bones indicate initial fossilization in a fresh water fluid with similar REE compositions. Bones from both settings have nearly collagen-free, REE-, U-, F- and Sr-enriched altered outer rims, while the collagen-bearing bone compacta in the central part often display early diagenetic pyrite void-fillings. However, NS bones exposed to Holocene seawater have outer rim δ18OPO4 values that are 1.1 to 2.6‰ higher compared to the central part of the same bones (δ18OPO4=18.2±0.9‰, n=19). Surprisingly, even the collagenrich bone compacta with low REE contents and apatite crystallinity seems altered, as NS tooth enamel (δ18OPO4=15.0±0.3‰, n=4) has about 3‰ lower δ18OPO4 values, values that are also similar to those of enamel from RS teeth. Therefore, REE concentration, N content and apatite crystallinity are in this case only poor proxies for the alteration of δ18OPO4 values. Seawater exposure of a few years up to 8 kyr can change the δ18OPO4 values of the bone apatite by N3‰. Therefore, bones fossilized in marine settings must be treated with caution for palaeoclimatic reconstructions. However, enamel seems to preserve pristine δ18OPO4 values on this time scale. Using species-specific calibrations for modern mammals, a mean δ18OH2O value can be reconstructed for Late Pleistocene mammalian drinking water of around −9.2±0.5‰, which is similar to that of Late Pleistocene groundwater from central Europe.
Keywords: Bones, Teeth, Oxygen, isotopes, Rare earth elements, Diagenesis, Phosphate


© 2008 Elsevier B.V. All rights reserved. Palaeogeography, Palaeoclimatology, Palaeoecology 266 (2008) 254-268







Interesting article; Archaeometry (2011)

PROVENANCING FLINT ARTEFACTS WITH ICP–MS USING
REE SIGNATURES AND Pb ISOTOPES AS DISCRIMINANTS:
PRELIMINARY RESULTS OF A CASE STUDY FROM
NORTHERN SWEDEN
A. OLOFSSON†
Department of Historical, Philosophical and Religious Studies, Umeå University, 901 87 Umeå, Sweden
and I. RODUSHKIN, ALS Scandinavia AB, Aurorum 10, S-977 75, Luleå, Sweden

Archaeological flint artefacts from the late Mesolithic/early Neolithic site of Vuollerim, northern
Sweden, have been geochemically investigated with ICP–SFMS and MC–ICP–MS in
search for the geological/geographical origin of the non-local flint. The Vuollerim flints were
compared with reference samples from Denmark (Cretaceous/Tertiary flint) and Russia (Carboniferous
flint). Elemental concentrations as well as elemental ratios for REEs and isotopic
ratios for Pb and Sr are presented. Significant differences were found between different
geological/geographical contexts. Two of the Vuollerim samples can be ascribed a South
Scandinavian origin. Possibly also eastern flint is present, although the results are not
conclusive in this case.
KEYWORDS:

NORTHERN SWEDEN, ICP–SFMS, MC–ICP–MS, CHERT, FLINT, PROVENANCE
STUDY, REE, Pb ISOTOPES

NEWS: "GREEN ANALYTICAL CHEMISTRY" 1st Workshop

 The 28th of January 2011 has been presented in the "GREEN ANALYTICAL CHEMISTRY"1st Workshop, at the University of Valencia, "Archaeological bones" as oral communication.



Evaluating bacterial pathogen DNA preservation in museum osteological collections

Ian Barnes1,2,* and Mark G. Thomas1

1Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
2School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK

Reports of bacterial pathogen DNA sequences obtained from archaeological bone specimens raise thepossibility of greatly improving our understanding of the history of infectious diseases. However, the survival of pathogen DNA over long time periods is poorly characterized, and scepticism remains about he reliability of these data. In order to explore the survival of bacterial pathogen DNA in bone specimens, we analysed samples from 59 eighteenth and twentieth century individuals known to have been infected with either Mycobacterium tuberculosis or Treponema pallidum. No reproducible evidence of surviving pathogen DNA was obtained, despite the use of extraction and PCR-amplification methods determined to be highly sensitive. These data suggest that previous studies need to be interpreted with caution, and we propose that a much greater emphasis is placed on understanding how pathogen DNA survives in archaeological material, and how its resence can be properly verified and used.
Keywords: ancient DNA; tuberculosis; syphilis; bone; evolution; medicine .

Proc. R. Soc. B (2006) 273, 645–653
doi:10.1098/rspb.2005.3339
Published online 13 December 2005

ANTHROPOGENIC VERSUS NATURAL CONTROL ON TRACE ELEMENT

Anthropogenic versus natural control on trace element and Sr–Nd–Pb isotope stratigraphy in peat sedimentsof southeast Florida (USA), 1500 AD to present
George D. Kamenov a,*, Mark Brenner a,b, Jaimie L. Tucker a
a Department of Geological Sciences, University of Florida, Gainesville, Florida, FL 32611, USA
b Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, Florida, FL 32611, USA
Received 2 September 2008; accepted in revised form 18 March 2009; available online 26 March 2009


Abstract

Analysis of a well-dated peat core from Blue Cypress Marsh (BCM) provides a detailed record of natural and anthropogenic factors that controlled the geochemical cycles of a number of trace elements in Florida over the last five centuries. The trace elements were divided into ‘‘natural” and ‘‘anthropogenic” groups using concentration trends from the bottom to the top of the core. The ‘‘natural” group includes Li, Sc, Cr, Co, Ga, Ge, Zr, Nb, Cs, Ba, Hf, Y, Ta, Th, and REE (Rare Earth Elements). These elements show similar concentrations throughout the core, indicating that changes in human activities after European arrival in the ‘‘New World” did not affect their geochemical cycles. The ‘‘anthropogenic” group includes Pb, Cu, Zn, V, Sb, Sn, Bi, and Cd. Upcore enrichment of these elements indicates enhancement by anthropogenic activities. From the early 1500s to present, fluxes of the ‘‘anthropogenic” metals to the marsh increased significantly, with modern accumulation rates several-fold (e.g., V) to hundreds of times (e.g., Zn) greater than pre-colonial rates. The dominant input mechanism for trace elements from both groups to the marsh has been atmospheric deposition. Atmospheric input of a number of the elements, including the anthropogenic metals, was dominated by local sources during the last century. For several elements, long-distant transport may be important. For instance, REE and Nd isotopes provide evidence for long-range atmospheric transport dominated by Saharan dust. The greatest increase in flux of the ‘‘anthropogenic” metals occurred during the 20th century and was caused by changes in the chemical composition of atmospheric deposition entering the marsh. Increased atmospheric inputs were a consequence of several anthropogenic activities, including fossil fuel combustion (coal and oil), agricultural activities, and quarrying and mining operations. Pb and V exhibit similar trends, with peak accumulation rates in 1970. The principal anthropogenic source of V is oil combustion. The decline in V accumulation after 1970 in the BCM peat corresponds to the introduction of low-sulfur fuels and the change from heavy to distilled oils since the 1970s. After the 1920s, Pb distribution in the peat follows closely the history of alkyl lead consumption in the US, which peaked in the 1970s. Pb isotopes support this inference and furthermore, record changes in the ore sources used to produce leaded gasoline. Idaho ores dominated the peat Pb isotope record until the 1960s, followed by Pb from Mississippi Valley Type deposits from the 1960s to the 1980s. Enhanced fluxes of Cu, Zn, Cd, Sn, Sb, Bi, and to some extent Ni during the last century are likely also related to fossil fuel combustion. Local agricultural activities may also have influenced the geochemical cycles of Cu and Zn. The peat record shows enhanced U accumulation during the last century, possibly related to phosphate mining in western Florida. Sr isotopes in the peat core also reflect anthropogenic influence. The 87Sr/86Sr ratio decreases from natural background values in the basal part of the core to lower values in the upper part of the core. The Sr isotope shift is probably related to quarrying operations in Florida, and marks the first time an anthropogenic signal has been detected using the Sr isotope record in a peat core.

2009 Elsevier Ltd. All rights reserved.
0016-7037/$ - see front matter 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.gca.2009.03.017
* Corresponding author.
E-mail address: kamenov@ufl.edu (G.D. Kamenov).
www.elsevier.com/locate/gca
Geochimica et Cosmochimica Acta 73 (2009) 3549–3567

ASPECTOS ARQUEOMETRICOS EN RESTOS OSEOS.ENSAYO METODOLOGICO.

Gianni GALLELLO*
Aspectos arqueometricos en restos óseos. Ensayo metodológico.

RESUMEN: Este artículo tiene como objetivo la presentación de los principales resultados del ensayo metodológico de Paleodieta efectuado a partir del análisis de elementos trazas realizados en restos óseos humanos. El método utilizado es la espectrometría de emisión en plasma (ICP OES). Esta investigación tiene en cuenta los factores diagénicos interviniendo con una metodología de control para una mejor lectura de los resultados. Los datos obtenidos ponen en evidencia los valores de los elementos traza posibles indicadores de una dieta a base vegetal y cárnica relacionados con los valores reveladores de los factores contaminantes que intervienen post-mortem.
PALABRAS CLAVE: Arqueometria, Paleodieta, elementos traza, diagénesis.
ABSTRACT: Archaeometrycal Aspects on skeletal remains. Methodological test. The purpose of this work is the presentation of the main results of a methodological palaeodiet test through trace elements analysis in skeletal remains. The method used to analyze the bone samples is Inductively Coupled Plasma Opltical Emission Spectrometry ( ICP OES). This research takes into account diagenic factors applying a method of control for a better reading of the results. The data obtained show trace elements values indicators of a vegetable diet and trace elements values indicators of a meat diet related with contaminated factors which take part post- mortem.
KEY WORDS: Archaeometry, palaeodiet, trace elements, diagenesis, Valencia/Boatella..




Introducción
En este articulo se presenta un ensayo metodológico para los análisis de los elementos trazas en restos óseos posibles indicadores de dieta teniendo en cuenta el proceso de diagénesis.
El estudio de los elementos trazas presenta problemas teóricos y dificultades en el momento de interpretar los resultados. El problema más importante se debe a las contaminaciones diagénicas. La diagénesis es un fenómeno de consolidación y tal vez de transformación parcial que acarrea una compactación, cementación y puede que una recristalización parcial de los sedimentos presentes en el hueso enterrado causando así una alteración o contaminación de los resultados en las muestras analizadas (Lambert, 1985). Los procesos diagénicos, se activan mediante varios fenómenos de cementación, regeneración cristalina, desmineralización y sustitución de minerales presentes, favorecidos por la presión de cargas de los mismos sedimentos, por variación de grado de humedad y temperatura y por algunas características conexas con la composición originaria de los sedimentos.
La modificación de la estructura física del hueso obedece a los cambios químicos en los componentes orgánicos e inorganicos del hueso. Las alteraciones químicas son muy comunes y no es posible visualizarlas por completo. El comportamiento diagénico de cada elemento es único y depende del hueso y de las características del suelo por esto aún no existe una regla general aplicable a todos los yacimientos.
Partendo de estas premisas planteamos, para una correcta interpretación de los resultados, el estudio del comportamiento diagenico a través de las determinaciones de elementos metálicos por espectrometría atómica de emisión en plasma (ICP OES). Las muestras analizadas han sido tomadas desde un fémur de una mujer de época Medieval hallada en la excavación del Fosal (Gandía)[1]. Las muestras tomadas pertenecen a diferentes sectores de la diáfisis femoral (hueso compacto), con el objetivo de poder observar eventuales variabilidades y susceptibilidades de los elementos traza distribuidos entre las diferentes áreas del hueso largo de un mismo individuo (intra-individual), causados en vida por factores metabólicos, pero en periodo post-mortem son consecuencias de los factores diagénicos (Francalacci, 1990). El protocolo comprende también la toma de muestras de tierra para relacionar los valores de los elementos traza en el hueso con los valores presentes en el terreno y averiguar si hay diferencias substanciales, que ayudarían en la correcta interpretación del grado de diagénesis presente en el hueso.



Metodología
La instrumentación utilizada para la realización de estos análisis ha sido la espectrometría de emisión en plasma (ICP OES). Es una técnica de espectrometría óptica, porqué se utilizan los espectros específicos de cada elemento para su identificación y determinación. Los espectros de emisión por cada elemento, están constituidos por líneas discretas a valores de longitud de onda muy definidas y se obtienen en fase gaseosa a elevada temperatura en un plasma de argón. La muestra se inyecta en fase liquida y se mide la intensidad de luz emitida a las diferentes longitudes de onda emitidos por cada elemento; es por tanto una técnica que permite analizar simultáneamente un conjunto elevado de elementos. La muestras (M) han sido tomadas en diferentes partes del fémur: La M1 en la diáfisis proximal por debajo del trocánter menor, la M2 en la diáfisis medial, la M3 parte de la diáfisis medio distal, MF son los restos de la diáfisis que quedaba de los muestreos anteriores, M4 tierra recogida en la parte interna de la diáfisis durante el muestreo de las M1, M2, M3. La MT es una mezcla de tierra que quedaba durante el muestreo de la MF más las partículas acumuladas durante la toma y la limpieza con el bisturí de la misma. Todas las muestras han sido analizadas por duplicado, esto nos asegura una mayor exactitud de los resultados durante la lectura del ICP OES y también mayor seguridad en caso de pérdida accidental de las muestras durante el proceso de análisis en el laboratorio. Los pasos a través de los cuales se ha llegado a la lectura de los elementos traza son comunes para todos los métodos de investigación de Paleodieta, de todos modos ha habido algunos cambios a comparación con los trabajos anteriores (Gallello 2003, 2008) en el proceso de preparación de la muestras y elaboración del calibrado con cuidado particular en los factores contaminantes en el sentido de higiene de laboratorio, control de lectura y corrección de datos.


La metodología aplicada para la preparación de las muestras sigue las presentes pautas, comenzando por la limpieza mecánica de la capa superficial del hueso por medio de un bisturí. Después de la primera pesada de la muestras se hace un lavado con agua pura en baño en ultrasonido durante 45 min. Siguiente paso es el proceso de desecación e incineración en mufla. Con el siguiente programa de rampas: I 30min a 150oC; II subir 1o/min hasta alcanzar 450oC; III 8horas a 450oC; IV bajada a 30oC. Sigue una segunda pesada de las muestras y pulverización de las mismas con mortero de cristal. Tercera pesada posterior a la pulverización.
El proceso de digestión empieza tomando aproximadamente “0,5”g en balanza analítica de las muestras: M1-M1b; M2-M2b; M3-M3b; M4; MF-MFb; MT-MTb.
El ataque con ácidos se ha efectuado con 1,5ml HNO3 y 1,5 ml HCl en “tubos largos y estrechos de cristal” calentados en placa calefactora con los dos blancos, a 100oC durante 40min.
Posteriormente la disolución digerida de cada muestra se vierte cuidadosamente en tubos de plástico de 15 ml, y se lleva a 15 ml con agua purificada. Esta dilución (A), más concentrada, nos ha servido para medir elementos traza como Zn, Cu, Pb, Cd, V, Mn. Para medir Mg y Sr se toman 2 ml de las muestra (A) añadiendo 1,5 ml HNO3 y 1,5 ml HCl llevando otra vez a volumen con agua purificada a 15 ml obteniendo así una nueva dilución (B). Cogiendo 0,2 ml de la (B) y añadiendo 5 ml HNO3 y 5 ml HCl y llevando a volumen a 50 ml se obtiene la concentración (C) para leer el Ca.
Para la preparación del patrón se ha utilizado un aforado de 100ml, tomando 10ml de cada patrón estándar de metal (Ca; Mg; Sr; Cu; Zn; Pb; Mn; Cd; V) y llevando a volumen hasta a 100ml con agua purificada. Por la preparación del calibrado se han empleado aforados de 50ml a los que se han añadido 5ml HNO3, 5ml HCl y las ml correspondientes del patrón concentrado, llevándolo a un volumen de 50 ml con agua pura. Se a empleado el siguiente rango de concentración: 0 blanco; 0,05; 0,1; 0,25; 0,50; 1; 2,5; 5; 10; 15ml. Ajustado en ppm se ha obtenido el siguiente calibrado: blanco; 0,1; 0,2; 0,5; 1; 2; 5; 10; 20; 30.






BIBLIOGRAFIA:

BARTOLI, F. (1995): “La Paleodieta: un’ulteriore informazione sulle abitudini dei gruppi umani antichi”, Miscellanea in Memoria di Giuliano Cremonesi, a cura del Dip. di Scienze Archeologiche dell’Università di Pisa, ETS, Pisa.
COLLINS, M. J et al. (2002):”The survival of organic matter in bone:
a review”. Archaeometry 44, 383-394.

COMAR, C.L; RUSSEL, R.S. y WASSERMAN, R.H. (1957):”Strontium-calcium movement from soil to man”. Science 126, 485-492.

FRANCALACCI, P. (1997): “L’analisi chimica dei reperti archeologici”. Quaderni del Civico Museo del finale 3, 39-43.

FRANCALACCI, P. (1990): “Intra-individual variation of trace element content in different skeletons coming from archaelogical sites”. Rivista di Antropologia, Vol.LXVIII, Roma, 225-230.

GALLELLO, G. (2003): “Aspetti paleonutrizionisti ed economici degli abitanti di Fivizzano: un affresco di una comunità montana del XIV-XV secolo della nostra era”. Pisa, 69-73.

GALLELLO, G. (2008): Aspectos de Paleodieta en Valencia. Trabajo Fin de Máster en Patrimonio Cultural, Facultad de Geografía e Historia, Universitat de València, edición 2007-2008, Valencia.

GILBERT, R. J. Jr. (1985): “Stress, paleonutrional and trace elements”. Gilbert and Mielke (eds.): The Analysis of prehistroric diets. Academic Press, Orlando.

HANCOCK, R. G. V. (1989): “The abuse of bone analyses for archaeological
dietary studies” Archaeometry 31, 169-179.

HEDGES, R. E. M. (2002): “ Bone diagenesis: an overview of processes”. Archaeometry 44, 319-328.

KLEPINGER, L.L. (1984): “Nutritional assessment from bone”. Annual review of anthropology 13.

LAMBERT, J.B. (1985): “Bone diagenesis and dietary analysis” J. of the Human Evolution 14.

NOLASCO, M. (1994): ”Comida: ¿alimento o cultura?”. En Sociedad, Economía y Cultura Alimentaria, Shoko Doode M. y Emma Paulina Pérez (comps.), Centro de Investigación en Alimentación y Desarrollo A.C. y Centro de Investigaciones y Estudios Superiores en Antropología Social, México, p. 399-407.


PALACIOS, M. y ROMÁN, R. (1994): “Algunas reflexiones sobre estudios de patrones alimentarios y su relación con la salud”. En Sociedad, Economía y Cultura Alimentaria, Centro de Investigación en Alimentación y Desarrollo A.C. y Centro de Investigaciones y Estudios Superiores en Antropología Social, México, p. 329- 343.


SILLEN, A. (1989): “Diagenesis of the inorganic phase of cortical bone”. The Chemistry of Prehistoric Bone, T.D. Price (ed.), Cambridge University Press, p. 211-229.



SUBIRA, M.E.; FRANCALACCI, P.; MALGOSA, A. y BORGOGNINI, S. (1991): “Reproducción y fiabilidad del análisis de elementos traza. Datos preliminares”. Nuevas Prospectivas en Antropología, Granada, p. 995-1003.

EFFECTS OF DIFFERENT SAMPLE PREPARATION METHODS

EFFECTS OF DIFFERENT SAMPLE PREPARATION METHODS
ON STABLE CARBON AND OXYGEN ISOTOPE VALUES OF
BONE APATITE: A COMPARISON OF TWO TREATMENT
PROTOCOLS*

C. J. YODER†‡
Anthropological Science Program, School of Environmental and Physical Science, Radford University,
PO Box 6939, Radford VA 24142, USA
and E. J. BARTELINK‡
Department of Anthropology, California State University, Chico, CA, USA

Researchers have long debated the appropriateness of stable isotope analysis of bone apatite to reconstruct the diets of ancient animals. The debate has centred, in part, on diagenesis of bone mineral from interaction with the burial environment. A number of acetic acid treatments are used to remove diagenetic carbonates from samples; however, less is known on how different protocols alter stable isotope values. We compare two common acetic acid solution treatments (0.1 M versus 1.0 M-buffered) to examine the effects on carbon and oxygen isotope values and Fourier transform infrared spectroscopy (FTIR) spectra in human bone from different burial contexts. Results indicate that both treatments have a similar effect on isotope values and FTIR spectra in bone apatite.
KEYWORDS: BONE APATITE, STABLE ISOTOPE ANALYSIS, PALAEODIET, FTIR,
DIAGENESIS
Archaeometry 52, 1 (2010) 115–130

MINERALOGICAL AND COMPOSITIONAL CHANGES IN BONES EXPOSED ON SOIL

Mineralogical and compositional changes in bones exposed on soil
surfaces in Amboseli National Park, Kenya: diagenetic mechanisms
and the role of sediment pore fluids
Clive N.G. Truemana*, Anna K. Behrensmeyerb, Noreen Turossc, Steve Weinerd
aSchool of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Portsmouth PO1 3QL, UK
bDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA
cLaboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
dDepartment of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
Received 23 March 2003; received in revised form 6 November 2003; accepted 12 November 2003

Abstract
Bones exposed on tropical savannah grasslands of Amboseli National Park, Kenya undergo extensive post-mortem alteration within 40 years. A combined analytical approach involving TEM microscopy, trace metal analysis, FTIR spectroscopy, and petrographic analysis has revealed a complex, dynamic diagenetic environment operating within exposed bones, driven  and evaporative transport of soil water from the bone/soil interface to the upper exposed surface of the bone. This process results in extensive bone/soil-water interaction, and is responsible for increases in the concentrations of trace elements such as Ba and La of 100 – >1000% within 15 years. The maximum and mean size of bone crystallites increases with continued exposure. This change in
mean crystallite length is correlated positively with increases in bone crystallinity, which in turn is associated with degradation of the bone protein. Microbial decomposition is rarely observed in the Amboseli bones, but where present resulted in severe dissolution–reprecipitation of bone mineral. Many bones showed extensive permineralization of the larger vascular spaces with calcite and barite and, to a lesser extent, crandallite. Permineralization of unburied bones may account for 95% reduction in macro
(micron–millimeter scale) porosity in the bone within 2 years of death.
We produce a model for pre-burial diagenesis of bone in arid tropical environments that highlights extensive alteration of bonechemistry within 1–40 years post-mortem.
Keywords: Bone; Diagenesis; Crystallinity; Collagen; Trace elements; Permineralization; Amboseli


Journal of Archaeological Science 31 (2004)

2003 Elsevier Ltd. All rights reserved.

THE SURVIVAL OF ORGANIC MATTER IN BONE:A REVIEW

Archaeometry 44, 3 (2002) 383–39T4h.

M. J. COLLINS, C. M. NIELSEN-MARSH, J. HILLER, C. I. SMITH and
J. P. ROBERTS
Fossil Fuels and Environmental Geochemistry (Postgraduate Institute), NRG, Drummond Building,
University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

R. V. PRIGODICH
Chemistry Department, Trinity College, Hartford, CT 06106, USA

T. J. WESS
Department of Biological Sciences University of Stirling, Stirling FK9 4LA, Scotland, UK

J. CSAPÒ
Pannon Agricultural University, Faculty of Animal Sciences, Kaposvár, Hungary

A. R. MILLARD
Department of Archaeology, University of Durham, South Road, Durham DH1 3LE, UK

 G. TURNER-WALKER
Faculty of Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway

If bone is considered as a composite of collagen (protein) and bioapatite (mineral), then three pathways of diagenesis are identified: (1) chemical deterioration of the organic phase; (2) chemical deterioration of the mineral phase; and (3) (micro)biological attack of the composite. The first of these three pathways is relatively unusual and will only occur in environments that are geochemically stable for bone mineral. However, because rates of biomolecular deterioration in the burial environment are slow, such bones would yield useful biomolecular information. In most environments, bones are not in thermodynamic equilibrium with the soil solution, and undergo chemical deterioration (path 2). Dissolution of the mineral exposes collagen to biodeterioration, and in most cases the initial phase of dissolution will be followed by microbial attack (path 3). Biological attack (3) also proceeds by initial demineralization; therefore paths 2 and 3 are functionally equivalent. However, in a bone that follows path 3 the damage is more localized than in path 2, and regions
equivalent to path 1 may therefore exist outside these zones of destruction. Other biomolecules, such as blood proteins, cellular lipids and DNA, exist within the physiological spaces within bone. For these biomolecules, death history may be particularly important for their survival.
KEYWORDS: BONE DIAGENESIS, COLLAGEN, OSTEOCALCIN, DNA, RACEMIZATION,
POROSITY, CHOLESTEROL
© University of Oxford, 2002

BONE DIAGENESIS: AN OVERVIEW OF PROCESSES

Archaeometry 44, 3 (2002) 319–328.

R. E. M. HEDGES
Research Laboratory for Archaeology and the History of Art, 6 Keble Road, Oxford OX1 3QJ, UK

This overview is a summary of the state of understanding of processes and states in bone diagenesis, as seen from a chemical perspective. It deals with the significance and usefulness of the measurements of ‘diagenetic parameters’—that is, of measures of diagenetic alteration and of the theories of physico-chemical processes which are considered to underlie the measured changes. In many ways these two aspects are seen to come together quite well, and some progress has been made in relating different burial environments to the observations of alteration. Such a framework also allows us to ask more penetrating questions, such as
how characteristic differences in diagenetic alteration might arise, and how the pre-burial environment might influence the eventual course of diagenesis.
KEYWORDS: BONE, DIAGENESIS, POROSITY, HYDROXYAPATITE, CRYSTALLINITY,
MICROMORPHOLOGY, PROTEIN

INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY

Eagle owl (Bubo bubo) pellets from Roman Sagalassos (SW Turkey): distinguishing the prey remains from nest and roost sites.

B. De Cupere 1, S. Thys 1 2, W. Van Neer 1 2 *, A. Ervynck 3, M. Corremans 4, M. Waelkens 4
1Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium2Katholieke Universiteit Leuven, Laboratory of Comparative Anatomy and Biodiversity, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium3Flemish Heritage Institute, Phoenix Building, Koning Albert II-laan 19 Box 5, B-1210 Brussels, Belgium4Katholieke Universiteit Leuven, Sagalassos Archaeological Research Project, Blijde Inkomststraat 21, B-3000 Leuven, Belgium
email: W. Van Neer (wvanneer@naturalsciences.be)
*Correspondence to W. Van Neer, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium.

Keywords
eagle owl • pellets • prey choice • skeletal element representation • fragmentation • nest site • roost site

Abstract
Two concentrations of animal bones, almost exclusively from small mammals and wild birds, were found within the destruction debris of a Roman bath complex in Sagalassos (SW Turkey). The overall species spectrum, skeletal element representation, fragmentation and preservation condition of the bones indicate that they represent the prey remains of a large nocturnal avian predator, more precisely the eagle owl (Bubo bubo). Differences in skeletal element representation and in prey species' spectrum show that the two bone clusters derive from pellets deposited near a nest site and a roost site, respectively. Radiocarbon dates obtained from the bones indicate that eagle owls lived in the collapsing bath complex during the second half of the 6th to the beginning of the 7th century AD, before the final abandonment of the town. The MNI of the prey animals found at the nest site, confronted with the daily dietary needs of a female eagle owl and its young, indicates repetitive use of the same place during several years. Copyright © 2008 John Wiley & Sons, Ltd.

ANALISI PALEONUTRIZIONALI



Il tessuto osseo
L’osso è un tessuto composto da una frazione inorganica, una matrice organica ed acqua. La componente organica, circa il 25% del peso secco dell’osso, è costituita essenzialmente da collagene, una proteina arrangiata in un fascio elastico e flessibile, a questa si aggiungono altre proteine non collagene, proteoglicani e lipidi.
La componente inorganica, è invece, composta da una matrice minerale cristallina, l’idrossiapatite, che contiene circa il 18,5% di fosforo e 39,9% di calcio.
Se l’osso è costituito per il 70% da minerale, un reperto inalterato dovrebbe contenere 12,95% P e 27,9% calcio. I differenti gruppi di porosità dell’osso non mostrano rapporti e Ca /P che oscillano tra 1,85 e 2,59. questa oscillazione può essere dovuta ad un’alterazione chimico-fisica e strutturale (diagenesi) e/o ai depositi di minerali ricchi in Ca e P, rilasciati nell’osso dal terreno circostante (inquinamento).
A causa della sua costituzione organo minerale ben “organizzata”, la matrice ossea è sempre in uno stato dinamico con l’ambiente circostante, sia in vita che post mortem, scambiando continuamente con l’esterno ioni che, in vita, si configurano con i flussi “biogenici” regolati dal fabbisogno fisiologico, e in morte, con lo scambio “diagenetico” di ioni।

La diagenesi
“La diagenesi è un fenomeno di consolidamento e talora di parziale trasformazione che porta ad una compattazione, cementazione e talora ad una parziale ricristallizazione di prodotti sedimentali preesistenti। I processi diagenetici, che si esplicano attraverso fenomeni vari di cementazione, rigenerazione cristallina, demineralizzazione e sostituzione di minerali preesistenti, sono favoriti dalla pressione di carico dei sedimenti stessi, da variazioni di grado di umidità e di temperatura, da alcune caratteristiche connesse con la costituzione originaria dei sedimenti, dalla presenza di acque.
Le modificazioni della struttura fisica dell’osso sono dovute ai cambiamenti chimici che avvengono sia nei costituenti organici dell’osso sia in quelli inorganici.
Le alterazioni chimiche sono molto comuni e non è possibile visualizzarle completamente.
Il comportamento diagenetico di ogni elemento è unico e dipende dall’osso e dalle caratteristiche del suolo per cui non esiste una regola generale applicabile a tutti i giacimenti.
Citando gli studi di Schoeninger (1979), che osservò che alcuni elementi diminuivano la loro concentrazione nell’osso (Na, Mg, Cl, K), mentre altri l’aumentavano (F, Si, Mn, Fe), le analisi di Waldrom (1981) e di Parker e Toots (1980) i quali, rispettivamente, osservarono come l’osso interrato assorbisse Pb e F dal terreno.
Lambert e altri (1983) studiarono la possibile diagenesi di dieci elementi per risalire a quelli utili ed attendibili da un punto di vista paleonutrizionale.

· Sr, Zn sono scarsamente influenzati dai processi diagenetici, quindi sono ottimi indicatori della dieta;
· Ca, Na e Pb mostrano delle piccole variazioni;
· Fe, Al, Mn e K sono diagenetici, non possono quindi essere utilizzati come indicatori.

Sulla base di questi studi, è stato elaborato il metodo di correzione tramite la comparazione con il terreno di giacitura: se la concentrazione di un elemento nell’osso è inferiore a quella presente nel terreno, in base alla teoria del gradiente di concentrazione, l’elemento può essere passato dall’osso al terreno e dunque potrebbe esservi stata contaminazione.
Al contrario, se la concentrazione di un elemento nell’osso è superiore a quella del terreno, è probabile che non sia avvenuta diagenesi[1].
Una teoria diametralmente opposta presume, invece, che la più bassa concentrazione dell’elemento rilevata nel terreno potrebbe costituire la dimostrazione di un flusso dell’elemento dal terreno verso l’osso[2].
I fattori principali che possono innescare un processo diagenetico sono:
· la natura dell’elemento;
· la sua mobilità nell’ambiente;
· le caratteristiche del terreno e dell’ambiente;
· il tempo di sepoltura;
· l’inquinamento chimico-ambientale
sono tutti fattori che nono permettono una generalizzazione ma vanno accuratamente esaminati uno aduno La procedura corretta, dunque, non può trascurare il campionamento del terreno sia vicino al reperto sia lontano dall’area di scavo per assicurarsi che l’osso non sia stato contaminato da questo.

Metodi d’indagine

Tra le diverse tecniche metodologiche possiamo citare:
· la fluorescenza a raggi X (XRF);
· l’analisi dell’attivazione strumentale dei neutroni (INAA);
· la spettrometria accoppiata al plasma (ICP);
· la spettroscopia ad assorbimento atomico (AAS).
La spettrometria con fluorescenze a raggi X è un metodo che permette di eccitare gli elementi costituenti del campione in seguito al bombardamento con i raggi X primari.
Gli atomi del campione diventano fluorescenti poiché perdono energia sprigionando raggi X secondari a lunghezze d’onda tipiche per ogni elemento.
Le determinazioni di ogni elemento si stabiliscono in base all’intensità delle lunghezze d’onda emesse.
L’analisi dell’attivazione strumentale dei neutroni richiede un reattore nucleare che permette di trasformare isotopi non radioattivi in forme radioattive ed instabili, attraverso il bombardamento dei nuclei
Tali nuclei rispondono emettendo raggi gamma che, una volta rintracciati e misurati, permettono la quantificazione di più elementi simultaneamente.
Si tratta di metodo d’analisi molto costoso quindi il suo utilizzo è limitato a pochi laboratori.
Le altre due tecniche sono delle forme di spettrometria luminosa od ottica, perché sono utilizzati degli spettri per identificare e quantificare elementi specifici.
Tali spettri, composti di lunghezze d’onda per ogni elemento specifico, sono emessi da sostanze gassose। .Nella spettrometria accoppiata ad emissione di plasma gli elementi sono identificati da spettri sprigionati dalla soluzione del campione, ottenuta iniettando questo ultimo in una camera ardente contenente argo.
Per la lettura si misurano le intensità degli spettri emessi.
Per mezzo di questa tecnica è possibile effettuare una analisi di più elementi contemporaneamente, la sua strumentazione ha un costo molto elevato.
La spettroscopia ad assorbimento atomico è la tecnica di indagine paleonutrizionale più comune; permette di analizzare un solo elemento alla volta, possiede un’alta sensibilità verso molti elementi chimici, è di facile utilizzo e le analisi hanno costi limitati.
Normalmente gli elettroni di ogni elemento ruotano attorno ad un nucleo, senza assorbire o emettere radiazioni.
Gli elementi stimolati, invece, sono trasportati in orbite lontane dal nucleo e, nel tornare alle loro posizioni originali, sprigionano energia e generano spettri caratteristici di ogni elemento chimico.
Gli elettroni sono eccitati dal calore di una fiamma o da strumenti come un forno a grafite.
Dalla misurazione delle lunghezze d’onda si identifica e si quantifica ogni elemento specifico. Tutto si basa sulla legge di Kirchoff: “la materia assorbe luce alla stessa lunghezza d’onda alla quale la emette”3.

Procedura analitica dei campioni
I passaggi attraverso cui si giunge alla lettura degli elementi in traccia sono comuni per tutti i metodi di indagine paleonutrizionale.
Il processo per la lettura degli elementi in traccia attraverso la spettroscopia ad assorbimento atomico, utilizzata anche per le analisi sul campione proveniente dal cimitero di Fivizzano, avviene tramite questi fondamentali passaggi:
· prelievo del campione da esaminare;
· pulizia;
· incenerimento e polverizzazione;
· digestione;
· diluizione;
· lettura.

Per quanto riguarda il prelievo, un campione d’osso corticale è più indicato rispetto all’osso spugnoso: a differenza delle coste, un frammento prelevato dal femore o dalla tibia mostra valori analitici più affidabili e meno soggetti ad inquinamento
L’osso spugnoso ha un elevata diagenesi post mortem e dà risultati poco soddisfacenti dal punto di vista paleonutrizionale4.
Per una più corretta individuazione degli elementi in traccia si preferiscono le tecniche “distruttive” : il prelievo del campione deve essere effettuato tramite carotaggio con punte cave diamantate in punti non osteometrici. Dopo aver effettuato una pulitura superficiale con il bisturi ed aver lavato il frammento con acqua bidistillata e averlo messo in vasca ad ultrasuoni, la quantità d’osso prelevata è essiccata per una notte in un stufa a 100° C, per rimuovere l’acqua interstiziale, e incenerita in muffola a 500/600° C per quattro ore, per eliminare ogni traccia di sostanza organica.
Il campione viene successivamente pestato con un apposito mortaio e le ceneri pesate e trasformate in soluzione, attraverso la digestione con acidi.
Il primo attacco viene effettuato con acido nitrico ad una temperatura di circa 120/150° C nel digestore per circa quindici minuti; si lascia raffreddare e successivamente si aggiungono 5 ml di acido cloridrico 1 N scaldando nuovamente per lo stesso tempo a 60/80° C.
La soluzione si porta poi a volume con acqua bidistillata .
Ogni elemento, per essere diluito, richiede differenti metodiche: il calcio ad esempio, essendo un elemento maggioritario, occorre diluirlo più degli altri elementi considerati। La lettura degli elementi in traccia è un operazione complessa che prevede accorgimenti particolari per ognuno di essi. I marcatori ossei utilizzati più comunemente per indicare una dieta a base di vegetali e cereali sono stronzio, bario e magnesio in quanto tendono a ritrovarsi in quantità elevate nelle ossa degli erbivori mentre sono limitati in quelle dei carnivori; al contrario, zinco e rame sono validi marcatori della dieta a base dicarne .Per un onnivoro come l’uomo, il tasso osseo di questi elementi è dato dalle loro concentrazioni medie, che saranno minori delle rispettive faune animali, erbivore e/o carnivore vissute nello stesso ambiente.
Il dato sarà più attendibile se ” standardizzato" ovvero ogni elemento dovrà essere rapportato al calcio. La correzione con il Ca è motivata dal fatto che la concentrazione di un dato elemento, in uno stesso individuo, è sempre in relazione con esso: dato che il Ca è parte integrante della matrice ossea, una sua perdita durante la sua permanenza nel terreno di sepoltura comporta anche una perdita negli altri elementi, è perciò necessario mantenere tra loro un rapporto matematico costante.
Dopo aver scelto l’elemento da analizzare ed averlo letto tramite spettrofotometria ad assorbimento atomico, si procede all'elaborazione dei dati: occorre poi effettuare la cosiddetta "correzione col sito" ovvero rapportare i valori di stronzio/calcio dell'uomo con quelli di stronzio/calcio dell'animale erbivoro della stessa area di scavo; tale rapporto dovrà risultare minore ad uno e tanto più esso si avvicina all’unità, tanto più alta sarà stata l’assunzione in vita di vegetali e/o cereali degli individui analizzati. Questo ci permette inoltre di poter confrontare il nostro campione con altri gruppi umani sincroni, diacronici ed eterotopici.
[1] L. L. KEPLINGER, 1984; J. B. LAMBERT et al., 1979.
47 J. B. LAMBERT et al., 1984-85
3 Crf., Dizionario di Archeologia, cit.
4 G. GROUPE, 1988. J. R. GILBERT, 1985.